W-algebra - significado y definición. Qué es W-algebra
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es W-algebra - definición


W-algebra         
ASSOCIATIVE ALGEBRA GENERALIZING THE VIRASORO ALGEBRA
W algebra; W symmetry; W-symmetry; Classical W-algebra; Finite W-algebra; Quantum W-algebra
In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.
Von Neumann algebra         
UNITAL *-ALGEBRA OF BOUNDED OPERATORS ON A HILBERT SPACE CLOSED IN THE WEAK OPERATOR TOPOLOGY
W-star-algebra; Factor (functional analysis); Von Neumann algebras; Factor (von Neumann algebra); Factors (von Neumann algebra); Von neumann algebra; Von Neumann group algebra; Von Neuman algebra; W-*-algebra; Type I von Neumann algebra; W* algebra; W*-algebra; Operator ring; Ring of operators; Type I factor; Type II factor; Type III factor; Powers factor; Araki-Woods factor; W-* algebra; Krieger factor; W star algebra; VonNeumann algebra; Von-Neumann algebra; Neumann algebra; Noncommutative measure theory; Commutative von Neumann algebras; Real dimension of a von Neumann algebra; Correspondence (von Neumann algebra); Rings of operators; Commutative von Neumann algebra
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.